Hace unos días presentamos un conjunto de 14 acertijos matemáticos de variada dificultad, recopilados de varias fuentes como el libro Lewi’s Carroll Games and Puzzles y varios sitios web.
Pedimos que dejaran las respuestas en el cajón de comentarios de esa entrada.
Hoy publicamos las respuestas.
1. El acertijo de Einstein
La respuesta a este problema puede sacarse realizando una tabla con la información que tenemos y yendo descartando a partir de las pistas. El vecino con un pez de mascota sería el alemán.
2. Los cuatro nueves
9/9+99=100
3. El oso
Este acertijo requiere conocer un poco de geografía. Y es que los únicos puntos en que realizando este camino llegaríamos al punto de origen es en los polos. De este modo, estaríamos ante un oso polar (blanco).
4. A oscuras
Siendo pesimistas y previendo el peor de los casos, el hombre debería coger la mitad más uno para asegurarse de conseguir un par de un mismo color. En este caso, 11.
5. Una sencilla operación
Este acertijo se resuelve con gran facilidad si tenemos en cuenta que estamos hablando de un momento. Es decir, tiempo. La afirmación es correcta si pensamos en las horas: si sumamos tres horas a las once, serán las dos.
6. El problema de las doce monedas
Para resolver este problema debemos utilizar las tres ocasiones con cuidado, rotando las monedas. En primer lugar distribuiremos las monedas en tres grupos de cuatro. Uno de ellos irá en cada brazo de la balanza y un tercero en la mesa. Si la balanza muestra un equilibrio, ello querrá decir que la moneda falsa con un peso diferente no está entre ellas sino entre las de la mesa. En caso contrario, estará en uno de los brazos.
En cualquier caso, en la segunda ocasión rotaremos las monedas en grupos de tres (dejando una de las originales fija en cada posición y rotando el resto). Si existe un cambio en la inclinación de la balanza, la moneda diferente está entre las que hemos rotado.
Si no hay diferencia, está entre las que no hemos movido. Retiramos las monedas sobre las que no hay duda que no son la falsa, con lo que en el tercer intento nos van a quedar tres monedas. En este caso bastará con pesar dos monedas, una en cada brazo de la balanza y la otra en la mesa. Si hay equilibrio la falsa será la que esté en la mesa, y en caso contrario y a partir de la información extraída en las anteriores ocasiones, podremos decir cual es.
7. El problema del camino del caballo
La respuesta es afirmativa, tal y como propuso Euler. Para ello, debería hacer el siguiente camino (los números representan el movimiento en el que estaría en dicha posición).
63 22 15 40 1 42 59 18 14 39 64 21 60 17 2 43 37 62 23 16 41 4 19 58 24 13 38 61 20 57 44 3 11 36 25 52 29 46 5 56 26 51 12 33 8 55 30 45 35 10 49 28 53 32 47 6 50 27 34 9 48 7 54 31.
8. La paradoja del conejo
La respuesta a si pasaría un conejo por el hueco entre la Tierra y la cuerda alargando un solo metro la cuerda es afirmativa. Y es algo que podemos calcular matemáticamente. Suponiendo que la tierra es una esfera con radio de alrededor de 6.3000 km, r=63000 km, a pesar de que la cuerda que la rodea por completo tiene que tener una longitud considerable, ampliarla un solo metro generaría un hueco de alrededor de 16 cm . Ello generaría que un conejo pudiera pasar cómodamente por el hueco entre ambos elementos.
Para ello tenemos que pensar que la cuerda que la rodea va a medir 2πr cm de longitud originalmente. La longitud de la cuerda alargando un metro será Si alargamos dicha longitud un metro, habrá que calcular la distancia que se ha de distanciar la cuerda, que será 2π (r+extensión necesaria para que se alargue). Entonces tenemos que 1m= 2π (r+x)- 2πr. Haciendo el cálculo y despejando la x, obtenemos que el resultado aproximado es de 16 cm (15,915). Ese sería el hueco que habría entre la Tierra y la cuerda.
9. La ventana cuadrada
La solución a este acertijo es hacer de la ventana un rombo. Así, seguiremos teniendo una ventana de 1*1 cuadrada y sin obstáculos, pero por la que entraría la mitad de luz.
10. El acertijo del mono
El mono llegaría a la polea.
11. Cadena de números
8806=6 7111=0 2172=0 6666=4 1111=0 7662=2 9312=1 0000=4 2222=0 3333=0 5555=0 8193=3 8096=5 7777=0 9999=4 7756=1 6855=3 9881=5 5531=0 2581= ¿?
La respuesta a esta pregunta es simple. Únicamente tenemos que buscar el número de 0 o círculos que hay en cada número. Por ejemplo, 8806 tiene seis ya que contaríamos el cero y los círculos que forman parte de los ochos (dos en cada uno) y del seis. Así, el resultado de 2581= 2.
12. Contraseña
Las apariencias engañan. La mayoría de la gente, y el policía que aparece en el problema, pensaría que la respuesta que los ladrones piden es la mitad de la cifra por la que preguntan. Es decir, 8/4=2 y 14/7=2, con lo que solo haría falta dividir el número que los ladrones dieran.
Es por ello que el agente responde 3 cuando le preguntan por el número 6. Sin embargo, esa no es la solución correcta. Y es que lo que los ladrones usan como contraseña no es una relación numérica, sino el número de letras del número. Es decir, ocho tiene cuatro letras y catorce tiene siete. De este modo, para poder entrar hubiese hecho falta que al agente dijera cuatro, que son las letras que tiene el número seis.
13. ¿Qué número sigue la serie?
Este acertijo, aunque puede parecer un problema matemático de difícil solución, en realidad únicamente requiere de observar las plazas desde la perspectiva contraria. Y es que en realidad estamos ante una fila ordenada, que estamos observando desde una perspectiva concreta. Así, la fila de plazas que estamos observando seria 86, ¿?, 88, 89, 90, 91. De este modo, la plaza ocupada es la 87.
14. Operaciones
Para solucionar este problema podemos encontrar dos posibles soluciones, siendo como hemos dicho ambas válidas. Para poder completarlo hay que observar la existencia de una relación entre las diferentes operaciones del acertijo. Aunque hay diferentes formas de dar solución a este problema, a continuación veremos dos de ellas.
Una de las formas es sumar el resultado de la fila anterior a la que vemos en la propia fila. Así: 1+4=5 5 (el del resultado de arriba)+(2+5)=12 12+(3+6)=21 21+(8+11)=¿? En este caso, la respuesta a la última operación sería 40.
Otra opción es que en vez de una suma con la cifra inmediatamente anterior, veamos una multiplicación. En este caso multiplicaríamos la primera cifra de la operación por la segunda y luego haríamos la suma. Así: 14+1=5 25+2=12 36+3=21 811+8=¿? En este caso el resultado sería 96.